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Introduction

Single nucleotide polymorphisms (SNPs) are sequence variations observed across
populations that are found at single points in the genome. Typically, either a major or
minor allele (i.e. one of two possible nucleotide bases) is observed at each SNP position.
In genomics, SNPs are used in a wide variety of applications, including the prediction of
specific traits, the classification of patients with varying drug reactions during clinical
trials, and the genome wide association studies of complex diseases [1]. There are
currently 3-4 million known SNPs in the human genome, or approximately one in every
1200 base pairs [2].

Haplotypes are regions in the genome containing a series of contiguous SNPs
that are co-inherited, because they are close together and recombination does not
occur between them during meosis. Thus, contiguous SNPs on a given chromosome can
be inherited in blocks of haplotypes, and when there exists a high degree of linkage
disequilibrium (i.e. correlation between the SNPs), a subset of SNPs can be selected that
captures the full haplotype information. The SNPs in this subset are referred to as
haplotype tag SNPs (htSNPs) [3]. The selection of htSNPs eliminates the need to
genotype all of the SNPs in a particular region, which is both cost-effective and efficient.

In the past decade, many computational strategies have been developed for the

efficient and accurate finding of htSNPs for particular chromosomal regions [3]. Here,



we review three strategies that emerged during the early stages of htSNP research.

Many of the current strategies have arisen based on modifications of these models.

Greedy Algorithm

Patil, et. al. [4] reported the implementation of a greedy optimization algorithm
in order to define a set of haplotype blocks, spanning chromosome 21. The procedure
proceeds as follows:

1. Define a “block” as a set of adjacent base pairs on the same chromosome,
consisting of one or more SNP.

2. Include only the blocks with >80% coverage, meaning that some haplotype
represented more than once in the block must define at least 80% of the
chromosomes in the block.

3. Select the block with the maximum m:n ratio, where m is the total number of
SNPs in the block, and n is the number of htSNPs in the block, i.e. the minimal
number of SNPs needed to differentiate the haplotypes that are represented
more than once in the block.

4. Discard all of the blocks that overlap with the selected block.

5. From the remaining blocks, repeat steps 3 and 4 until a contiguous set of non-

overlapping blocks has been selected.
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Fig 1 (from Patil, et. al.). A schematic of the greedy algorithm for htSNP selection.
Each column represents a human chromosome, and each box represents a SNP
(blue boxes represent the major allele, yellow boxes represent the minor allele).
The blocks have been demarcated by the black lines pointing to numerical labels.
The htSNP selection process for block 13724944 is depicted. The chromosomes
are organized by haplotype, and the four most common haplotypes define at
least 80% of the chromosomes in the block. The selected htSNPs are represented

by circles, and their pairings uniquely differentiate the haplotypes in the block.



By analyzing 20 independent copies of chromosome 21, the authors identified
35,989 SNPs, which was narrowed to 24,047 common SNPs which had a minor allele
present two or more times in the set of samples. Using this method, 4135 blocks with an
average size of 7.8 kb were identified on chromosome 21. 14% of the blocks had more
than 10 SNPs, which accounted for 44% of the length of the chromosome; 52% of the
blocks had less than 3 SNPs, which accounted for 20% of the length of the chromosome.
When the coverage percentage was increased from 80% to 90%, the method yielded
larger numbers of shorter blocks, as expected.

While this procedure is relatively simple and straightforward to implement, it
has several disadvantages as a greedy algorithm. It gives an approximate solution, but it
cannot guarantee that its solution is optimal [5]. Stage 3 of the algorithm makes a
decision in block selection given only the information at hand; it does not consider the
effects of its decision on future iterations. In general, greedy algorithms make locally

optimal choices, which may or may not always lead to globally optimal choices [6].

Dynamic Programming Algorithm

Zhang, et. al. [5] implemented a dynamic programming algorithm to find a set of
representative htSNPs using the same chromosomal sequence data as Patil, et. al. This
algorithm recursively finds the minimal number of SNPs required to distinguish the set
coverage percentage of haplotypes in each block, for the smallest number of blocks. The

algorithm proceeds as follows:



Given K haplotypes and n consecutive SNPs, let r; be a K-dimensional vector,
wherei=1, 2, ..., nand ri(k) = 0,1, or 2 is the allele of the kth haplotype at the ith
SNP site (O indicates missing data). A block is then defined by r; ... r;.

Haplotypes are compatible if the alleles at each SNP site (sites without
missing data) are identical. A haplotype is ambiguous if it is compatible with two
haplotypes that are imcompatible with each other. For example, for h; = (1, 1, 0, 2),
h,=(1,1,2,0),and h3=(1, 1, 1, 2), hy is compatible with h, and hs, because they
share alleles at every point that does not have missing data. However, h; is clearly
not compatible with hs, so h; is ambiguous. This algorithm treats two unambiguous,
compatible haplotypes as identical.

Let S; be the number of htSNPs used in the optimal blocking of first j SNPs, r;
... Ij, and set Sp = 0. Let f(r; ... rj) be the minimal number of SNPs needed to
differentiate the coverage percentage of haplotypes that are represented more than
once in the defined block. Let block(r; ... r;) be a Boolean function that equals 1 if at
least the coverage percentage of haplotypes in the block is represented more than
once. Then,

Sj=min{Si.; + f(ri ... rj), if 1 <i<jand block(r; ... rj) = 1}
computes the minimum number of htSNPs for the blocking of n SNPs.

Because several blocking schemes may use the same number of htSNPs,
another equation can also be used to compute the minimum number of required

blocks, C;. Setting Co =0,



Gi=min{C.; +1,if 1 <i<jand block(r; ... rj) =1 and S;= Si.; + f(r; ... rj)}.

By running this algorithm on the data from Patil, et. al. and comparing to
their analysis, the number of htSNPs in chromosome 21 was reduced by 21.5% (4563
to 3582) and the number of blocks was reduced by 37.7% (4135 to 2575). When the
coverage percentage was increased from 80% to 90%, the method yielded larger
numbers of shorter blocks, as expected. This method produces optimal solutions,
but due to its recursive nature, may require an overwhelming amount of
computational resources to run on long sequences. In contrast to the greedy
algorithm, this dynamic programming algorithm solves the problem of assignment
by first tackling smaller problems involving subsets of blocking, which guarantees

that the solution is optimal [7].

Statistical Method
The previous two methods have focused on minimizing the number of

representative SNPs to account for most of the haplotypes in each block. However,
Stram, et. al. [8] proposed that the minimum set of htSNPs is not always the optimal
one, and instead uses a statistic similar to the coefficient of determination to choose the
optimal set of htSNPs. The process proceeds as follows:

1. ldentify blocks of high linkage disequilibrium, using the definitions as outlined in

Gabriel, et. al. [9]:
a. A haplotype block is defined as a region over which <5% of comparisons

among SNP pairs show strong evidence of historical recombination.



Strong evidence of historical recombination is defined as when the upper

confidence bound on allelic association, D’, is less than 0.9.
For each common haplotype (i.e. those with an estimated frequency of >5%),
calculate an estimate of the haplotype dosage, x(H), or the expected number of
copies a haplotype h will be contained in a haplotype pair H=(hz,h,). Note that
O(H))=0, 1, or 2.

E{On(H)1Gi} = (Zn~ai On(Hi)pn1Pn2)/ (ki ~6i Phipn2),
where E{dy(H;)| G;} is the haplotype dosage for a subject i with genotype G, 2 ~ i
is a summation over the haplotype pairs, and py; is the frequency of the first
haplotype.
Find the set of htSNPs that maximizes the minimum value of R, for the common
haplotypes. R, is the squared correlation between the estimate E{dx(H;)| G} and
the true value Sy (H;).
a. In other words, Ry’ is the ratio between the variance of &, explained by
the genotype data to the total variance of d,(H;) (see Fig. 2 for details).
Ry’ = (Var[E{Sn(H) | G}])/(2pn(1-ph))
Note that the variance is calculated by averaging E{d,(H;) | G;} over all of

the genotypes, weighted by the probability of each genotype.



Genotype, G (0,0) (0.1) 0.2) (1,0) (L,1) (1.2) (2,0) 2.0 2.2

Haplotype pair, H {(0,0.00.00 (0,001} {(0.1).(0,1} {(1.0).0.0)} &:?;Eg (1) ; (L0000} (LML} {(LI(LO} {(1.1).(1.1)}

AG) 7 2pap) n 2pa0 2Apaps + papo) 2ppy 2 2psp; :

E{6,0(H) |G} 2 1 0 1 P 0 0 0 0
Papi+P3bo

E{6,1(H)|G} 0 1 2 0 P 1 0 0 0
Pap1+pipo

E{6,2(H)|G} 0 0 0 1 Py 0 2 1 0
Pap1+pipo

E{6n(H)|G} 0 0 0 0 Pipo 1 0 1 2
P+ pipo

Fig 2 (from Stram, et. al.). Details on the calculation of Var[E{dn(H;)| G}] and R’

for two SNPs.

It seems like a potential disadvantage of this method would be the number of
calculations necessary to find E{dx(H,)| G;} when many SNPs are involved. However, this
can be mediated by a “divide-and-conquer” process, in which the calculations are
broken up into pseudo-blocks of approximately five contiguous SNPs, and only the
haplotypes that have non-zero frequency after each set of pseudo-block calculations
continue to be considered.

Finding the set of htSNPs that maximizes the minimum value of Ry’ for the
common haplotypes also requires a tedious number of calculations. This process can
also be shortened by implementing a modified stepwise procedure. Instead of
exhaustively checking every possible set of SNPs, the algorithm first finds the single best
SNP (i.e. the SNP that produces the greatest increase in the maximal minimum value of
R+, which is calculated from the remaining SNPs). It then looks backward to find the

next SNP that will further increase ha, until the desired number of htSNPs is found.



Although using this procedure no longer guarantees that the best set of htSNPs will be
found, the authors report that the results remain “very favorable.”

Unlike the two previously described algorithms, this method does not compute a
value for the number of htSNPs needed to represent the haplotypes in each block. The
stepwise procedure can be repeated until the desired number of htSNPs is found. It
therefore may be possible to combine the merits of both the dynamic programming
algorithm and the statistical method, using the first to compute the minimum number
of htSNPs needed for optimal blocking and the second to determine, based on R, the

set of htSNPs.

Conclusion

The papers that initially proposed the greedy algorithm, the dynamic
programming algorithm, and the statistical method have been highly cited, by 1042,
312, and 372 sources, respectively (Google Scholar). Many other strategies for
determining htSNPs have also emerged following these basic methods, including
entropy-based selection [10], usage of a hidden Markov model to define block structure
[11], and selection by principle components analysis [3].

Overall, of those analyzed, the greedy algorithm is the easiest to implement. It,
however, does not guarantee the output of a globally optimal decision. The dynamic
programming algorithm does produce optimal solutions, but because it relies on
recursion, it may be much more computationally intensive, especially when running on

larger regions. In contrast, instead of focusing purely on minimizing the number htSNPs,



the statistical method uses R, to minimize the uncertainty in the prediction of common
haplotypes based on SNP genotypes. There are a number of measures that can be taken
to reduce the number of calculations required by this method, while still preserving the
quality of its results. Thus, the statistical method seems favorable in terms of its

approach and efficiency. Ultimately, there exist a host of strategies for htSNP searching,
and each should be evaluated on the basis of performance, speed, and optimization for

the desired application of the algorithm.
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